Tilings and discrete geometry

V. Berthé, T. Fernique

LIRMM-CNRS-Montpellier-France
berthe@lirmm.fr
http://www.lirmm.fr/~berthe

Workshop on combinatorial and computational aspects of tilings –London 2008
Tilings by lozenges

We work with lozenge tilings of the plane (tilings with 60° rhombi, dimer covering of the honeycomb graph).
Stepped surfaces

Definition

A stepped surface is defined as a union of faces such that the orthogonal projection onto the diagonal plane $x + y + z = 0$ induces an homeomorphism from the stepped surface onto the diagonal plane.
Lift [Thurston]

Let T be a lozenge tiling of the plane $x + y + z = 0$. Then there exists a unique stepped surface, up to translation by the vector $(1, 1, 1)$, that projects onto T by the orthogonal projection onto the plane $x + y + z = 0$.
Stepped surface

Definition

A *functional discrete surface* is defined as a union of pointed faces such that the orthogonal projection onto the *diagonal plane* $x + y + z = 0$ induces an *homeomorphism* from the discrete surface onto the diagonal plane.

Being a stepped surface is a *local property*.
Stepped surface

Definition

A **functional discrete surface** is defined as a union of pointed faces such that the orthogonal projection onto the **diagonal plane** \(x + y + z = 0 \) induces an **homeomorphism** from the discrete surface onto the diagonal plane.

Being a stepped surface is a **local property**.
A **functional discrete surface** is defined as a union of pointed faces such that the orthogonal projection onto the **diagonal plane** $x + y + z = 0$ induces an **homeomorphism** from the discrete surface onto the diagonal plane.

Being a stepped surface is a **local property**.
Let $v \in \mathbb{R}^3$ and $\mu \in \mathbb{R}$. The **standard arithmetic discrete hyperplane** $\mathcal{P}(v, \mu)$ is defined as

$$\mathcal{P}(v, \mu) = \{x \in \mathbb{Z}^3; \ 0 \leq \langle x, v \rangle + \mu < ||v||_1 \}.$$

The **stepped plane** $\mathcal{P}_{v, \mu}$ is defined as the stepped surface whose set of **edges** is $\mathcal{P}(v, \mu)$.

![Arithmetic discrete planes](image-url)
Some objects...

- **discrete** lines, planes, surfaces,

...and some **transformations/dynamical systems** acting on them

- substitutions

- flips
Generalized substitutions

Generalized substitutions belong to the family of Combinatorial tiling substitutions according to the terminology of [N. Priebe Frank, A primer of substitution tilings of the Euclidean plane].

Motivation

- Define substitution rules acting on stepped surfaces
- Give a geometric version of a multidimensional continued fraction algorithm
Multidimensional substitution

Exemple [Arnoux-Ito]

\[\Theta: 1 \rightarrow \begin{array}{c} 2 \\ 1 \end{array} \quad 2 \rightarrow 3 \quad 3 \rightarrow 1 \]

How to iterate such a rule?

Based on Arnoux-Ito's formalism:

- With a morphism of the free group (+ Hypothesis) \(\sigma \) is associated a generalized substitution \(\Theta(\sigma)^* \).
- We have both local and global information
- Preserves the set of stepped planes and even of stepped surfaces
- We have algebraic properties

\[\Theta(\sigma \circ \tau)^* = \Theta(\tau)^* \circ \Theta(\sigma)^* \]
Local rules for Θ

\[1 \rightarrow \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad 2 \rightarrow 3 \quad 3 \rightarrow 1 \]
Local rules for Θ

$1 \rightarrow \frac{2}{1}$ $2 \rightarrow 3$ $3 \rightarrow 1$

\[
\begin{array}{c}
\begin{array}{c}
2 \\
1
\end{array} & \rightarrow & \begin{array}{c}
3 \\
2 \\
1
\end{array} \\
3 & 1 & \rightarrow & \begin{array}{c}
2 \\
1 \\
1
\end{array} \\
1 & \rightarrow & \begin{array}{c}
2 \\
1 \\
1
\end{array} \\
1 & \rightarrow & \begin{array}{c}
2 \\
1 \\
1
\end{array} \\
2 & 1 & \rightarrow & \begin{array}{c}
2 \\
1 \\
3
\end{array} \\
1 & \rightarrow & \begin{array}{c}
2 \\
1 \\
1
\end{array}
\end{array}
\]
Local rules for Θ

$$1 \rightarrow \frac{2}{1} \quad 2 \rightarrow 3 \quad 3 \rightarrow 1$$

2
1
3
1
\rightarrow

3
2
1
\rightarrow

2
1
1
\rightarrow

2
1
2
\rightarrow

2
1
3
\rightarrow

2
1
Local rules for Θ

$$1 \rightarrow \frac{2}{1} \hspace{1cm} 2 \rightarrow 3 \hspace{1cm} 3 \rightarrow 1$$
Let σ be a substitution on A.

Example:

$$\sigma(1) = 12, \ \sigma(2) = 13, \ \sigma(3) = 1.$$

The incidence matrix M_σ of σ is defined by

$$M_\sigma = (|\sigma(j)|_i)_{(i,j) \in A^2},$$

where $|\sigma(j)|_i$ counts the number of occurrences of the letter i in $\sigma(j)$.

Unimodular substitution

$$\det M_\sigma = \pm 1$$

Abelianisation

Let d be the cardinality of A. Let $l : A^* \to \mathbb{N}^d$ be the abelinisation map

$$l(w) = ^t(\ |w|_1, |w|_2, \cdot \cdot \cdot , |w|_d).$$
Global rule

Let \((x, 1^*), (x, 2^*), (x, 3^*)\) stand for the following faces

Generalized substitution [Arnoux-Ito][Ei]

Let \(\sigma\) be a unimodular morphism of the free group.

\[
\Theta^*_\sigma(x, i^*) = \sum_{k \in A} \sum_{P, \sigma(k) = P \in S} (M_{\sigma^{-1}}^{-1}(x - I(P)), k^*).
\]
Theorem [Arnoux-Ito, Fernique]

Let \(\sigma \) be a unimodular substitution. Let \(\mathbf{v} \in \mathbb{R}^d_+ \) be a nonzero vector. The generalized substitution \(\Theta^*_\sigma \) maps without overlaps the stepped plane \(\mathcal{P}_{\mathbf{v},\mu} \) onto \(\mathcal{P}_{tM\mathbf{v},\mu} \).
Theorem [Arnoux-Ito, Fernique]

Let σ be a unimodular substitution. Let $v \in \mathbb{R}^d_+$ be a nonzero vector. The generalized substitution Θ^*_σ maps without overlaps the stepped plane $\mathcal{P}_{v,\mu}$ onto $\mathcal{P}_{tM_\sigma v,\mu}$.

Let σ be a unimodular **morphism** of the free group. Let $v \in \mathbb{R}^d_+$ be a nonzero vector such that

$$tM_\sigma v \geq 0.$$

Then, Θ^*_σ maps without overlaps the stepped plane $\mathcal{P}_{v,\mu}$ onto $\mathcal{P}_{tM_\sigma v,\mu}$.
Theorem

Let σ be a unimodular substitution. The generalized substitution Θ^*_σ acts without overlaps on stepped surfaces.
A characterization of stepped surfaces by flips

Projection

Let \(\pi \) the **orthogonal projection** on the diagonal plane \(x + y + z = 0 \).

Local finiteness

A sequence of flips \((\varphi_{s_n})_{n \in \mathbb{N}} \) is said to be **locally finite** if, for any \(n_0 \in \mathbb{N} \), the set \(\{ s_n \in \mathbb{Z}^3, \pi(s_n) = \pi(s_{n_0}) \} \) is bounded.

Theorem [Arnoux-B.-Fernique-Jamet]

A union of faces \(\mathcal{U} \) is a **stepped surface** if and only if there exist a **stepped plane** \(\mathcal{P} \) and a **locally finite sequence** of flips \((\varphi_{s_n})_{n \in \mathbb{N}} \) such that

\[
\mathcal{U} = \lim_{n \to \infty} \varphi_{s_n} \circ \ldots \circ \varphi_{s_1}(\mathcal{P}).
\]

Lozenge tilings
Substitutions
Continued fractions
Brun’s algorithm

Brun’s transformation is defined on $[0, 1]^d \setminus \{0\}$ by

$$T(\alpha_1, \ldots, \alpha_d) = \left(\frac{\alpha_1}{\alpha_i}, \ldots, \frac{\alpha_{i-1}}{\alpha_i}, \left\{ \frac{1}{\alpha_i} \right\}, \frac{\alpha_{i+1}}{\alpha_i}, \ldots, \frac{\alpha_d}{\alpha_i} \right),$$

where

$$i = \min\{j | \alpha_j = \|\alpha\|_\infty\}.$$

For $a \in \mathbb{N}$ and $i \in \{1, \ldots, d\}$, we introduce the following $(d + 1) \times (d + 1)$ matrix:

$$B_{a,i} = \begin{pmatrix} a & 1 \\ l_i & 0 \\ 1 & l_{d-i} \end{pmatrix}.$$

One has

$$(1, \alpha) = \|\alpha\|_\infty B_{a,i}(1, T(\alpha)).$$

Let $\beta_{a,i}$ be a substitution with incidence matrix $B_{a,i}$, then

$$P_{(1,\alpha),\mu} = \Theta_{\beta_{a,i}}^* (P_{\|\alpha\|_\infty}(1, T(\alpha), \mu)).$$
Brun’s transformation is defined on $[0, 1]^d \setminus \{0\}$ by

$$T(\alpha_1, \cdots, \alpha_d) = \left(\frac{\alpha_1}{\alpha_i}, \cdots, \frac{\alpha_{i-1}}{\alpha_i}, \left\{ \frac{1}{\alpha_i} \right\}, \frac{\alpha_{i+1}}{\alpha_i}, \cdots, \frac{\alpha_d}{\alpha_i} \right),$$

where

$$i = \min\{j \mid \alpha_j = \|\alpha\|_{\infty} \}.$$

- Unimodular algorithm
- Weak convergence (convergence of the type $|\alpha - p_n/q_n|$)
- Metric results (natural extension)
Brun expansion of a stepped plane

How to read on the stepped plane

\[i = \min\{j \mid \alpha_j = \|\alpha\|_\infty \} \] and the partial quotient \(a = [1/\alpha_i]? \)

We thus need entries comparisons and floor computations.

If the above parameters are known, then

\[\mathcal{P}(1,\alpha),\mu = \Theta_{\beta_{a,i}}^* (\mathcal{P}|\alpha|_\infty(1, T(\alpha)),\mu), \]

where the substitution \(\beta_{a,i} \) has incidence matrix \(B_{a,i} \) with

\[\|\alpha\|_\infty B_{a,i}(1, T(\alpha)) = (1, \alpha). \]
Brun expansion of a stepped plane $\mathcal{P}_{(1,\alpha)}$

We consider the stepped plane with normal vector $(1, (\alpha_1, \alpha_2))$, with

$$\alpha = (\alpha_1, \alpha_2) \in [0, 1]^2 \setminus \{0\}.$$

One has $\alpha_1 > \alpha_2$.
Brun expansion of a stepped plane

One has \(\left\lfloor \frac{1}{\alpha_1} \right\rfloor = 2. \)
Brun expansion of a stepped plane

Finally, one has $\mathcal{P}(1,\alpha) = \Theta_{\beta_2,1}^*(\mathcal{P}(1,\tau(\alpha)))$.

We thus can define geometrically Brun expansions of a stepped surfaces.
<table>
<thead>
<tr>
<th>Arithmetics</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)-uple (\alpha \in [0, 1]^d)</td>
<td>stepped plane (P_{(1,\alpha)})</td>
</tr>
<tr>
<td>((1, \alpha_n) \propto B_n(1, \alpha_{n+1}))</td>
<td>(P_{(1,\alpha_n)} = \Theta^*{\sigma_n} (P{(1,\alpha_{n+1})}))</td>
</tr>
<tr>
<td></td>
<td>with (t B_n) incidence matrice of (\sigma_n)</td>
</tr>
<tr>
<td>Arithmetics</td>
<td>Geometry</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(d)-uple (\alpha \in [0, 1]^d)</td>
<td>stepped plane (\mathcal{P}_{(1, \alpha)})</td>
</tr>
<tr>
<td>((1, \alpha_n) \propto B_n(1, \alpha_{n+1}))</td>
<td>(\mathcal{P}{(1, \alpha_n)} = \Theta{\sigma_n}^* (\mathcal{P}{(1, \alpha{n+1})}))</td>
</tr>
<tr>
<td></td>
<td>with (t B_n) incidence matrix of (\sigma_n)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>((1, \alpha_0, \beta_0) = (1, \frac{11}{14}, \frac{19}{21}))</td>
<td></td>
</tr>
<tr>
<td>Arithmetics</td>
<td>Geometry</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>(d)-uple (\alpha \in [0, 1]^d)</td>
<td>stepped plane (\mathcal{P}_{(1, \alpha)})</td>
</tr>
</tbody>
</table>
| \((1, \alpha_n) \propto B_n(1, \alpha_{n+1})\) | \(\mathcal{P}_{(1, \alpha_n)} = \Theta_{\sigma_n}^* (\mathcal{P}_{(1, \alpha_{n+1})})\)
 with \(t B_n\) incidence matrix of \(\sigma_n\) |
<p>| ((1, \frac{11}{14}, \frac{19}{21}) \propto B_{1,2}(1, \frac{33}{38}, \frac{2}{19})) |</p>
<table>
<thead>
<tr>
<th>Arithmetics</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-uple $\alpha \in [0, 1]^d$</td>
<td>stepped plane $\mathcal{P}_{(1, \alpha)}$</td>
</tr>
<tr>
<td>$(1, \alpha_n) \propto B_n(1, \alpha_{n+1})$</td>
<td>$\mathcal{P}{(1, \alpha_n)} = \Theta{\sigma_n}^* (\mathcal{P}{(1, \alpha{n+1})})$</td>
</tr>
<tr>
<td>with $t B_n$ incidence matrix of σ_n</td>
<td></td>
</tr>
</tbody>
</table>

$(1, \frac{33}{38}, \frac{2}{19}) \propto B_{1,1}(1, \frac{5}{33}, \frac{4}{33})$
<table>
<thead>
<tr>
<th>Arithmetics</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-uple $\alpha \in [0, 1]^d$</td>
<td>stepped plane $\mathcal{P}_{(1,\alpha)}$</td>
</tr>
<tr>
<td>$(1, \alpha_n) \propto B_n(1, \alpha_{n+1})$</td>
<td>$\mathcal{P}{(1,\alpha_n)} = \Theta{\sigma_n}^* (\mathcal{P}{(1,\alpha{n+1})})$</td>
</tr>
<tr>
<td>$(1, \frac{5}{33}, \frac{4}{33}) \propto B_{6,1}(1, \frac{3}{4}, \frac{4}{5})$</td>
<td>with tB_n incidence matrix of σ_n</td>
</tr>
<tr>
<td>Arithmetics</td>
<td>Geometry</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>(d)-uple (\alpha \in [0, 1]^d)</td>
<td>stepped plane (\mathcal{P}_{(1, \alpha)})</td>
</tr>
<tr>
<td>((1, \alpha_n) \propto B_n(1, \alpha_{n+1}))</td>
<td>(\mathcal{P}{(1, \alpha_n)} = \Theta{\sigma_n}^* (\mathcal{P}{(1, \alpha{n+1})})) with (t B_n) incidence matrix of (\sigma_n)</td>
</tr>
<tr>
<td>((1, \frac{3}{4}, \frac{4}{5}) \propto B_{1,2}(1, \frac{3}{4}, \frac{1}{4}))</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image-url)
<table>
<thead>
<tr>
<th>Arithmetics</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d \text{-uple } \alpha \in [0, 1]^d)</td>
<td>stepped plane (\mathcal{P}_{(1, \alpha)})</td>
</tr>
<tr>
<td>((1, \alpha_n) \propto B_n(1, \alpha_{n+1}))</td>
<td>(\mathcal{P}{(1, \alpha_n)} = \Theta{\sigma_n}^* (\mathcal{P}{(1, \alpha{n+1})})) with (t B_n) incidence matrix of (\sigma_n)</td>
</tr>
<tr>
<td>((1, \frac{3}{4}, \frac{1}{4}) \propto B_{1,1}(1, \frac{1}{3}, \frac{1}{3}))</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of stepped plane](image-url)
<table>
<thead>
<tr>
<th>Arithmetics</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)-uple (\alpha \in [0, 1]^d)</td>
<td>stepped plane (\mathcal{P}_{(1, \alpha)})</td>
</tr>
<tr>
<td>((1, \alpha_n) \propto B_n(1, \alpha_{n+1}))</td>
<td>(\mathcal{P}{(1, \alpha_n)} = \Theta{\sigma_n}^* (\mathcal{P}{(1, \alpha{n+1})}))</td>
</tr>
<tr>
<td>((1, \frac{1}{3}, \frac{1}{3}) \propto B_{3,1}(1, 0, 1))</td>
<td>with (tB_n) incidence matrix of (\sigma_n)</td>
</tr>
<tr>
<td>Arithmetics</td>
<td>Geometry</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>d-uple $\alpha \in [0, 1]^d$</td>
<td>stepped plane $\mathcal{P}_{(1,\alpha)}$</td>
</tr>
<tr>
<td>$(1, \alpha_n) \propto B_n(1, \alpha_{n+1})$</td>
<td>$\mathcal{P}{(1,\alpha_n)} = \Theta^*\sigma_n (\mathcal{P}{(1,\alpha{n+1})})$</td>
</tr>
<tr>
<td>$(1, 0, 1) \propto B_{1,2}(1, 0, 0)$</td>
<td>with t_{B_n} incidence matrix of σ_n</td>
</tr>
</tbody>
</table>

- $\Theta^*_\sigma_n$ represents a substitution rule in the context of continued fractions and tiling theory.

The table summarizes the relationship between arithmetics and geometry in the context of lozenge tilings and substitutions.
Applications

- **Generation** of discrete planes
- **Recognition problem**: Given a set of points in \(\mathbb{Z}^d \), does there exist an arithmetic discrete plane that contains them?
- **Generalized Rauzy fractals** associated with non-algebraic parameters